REDUCIBILITY OF SOME INDUCED REPRESENTATIONS OF p-ADIC UNITARY GROUPS

FIONA MURNAGHAN AND JOE REPKA

ABSTRACT. In this paper we study reducibility of those representations of quasi-split unitary p-adic groups which are parabolically induced from supercuspidal representations of general linear groups. For a supercuspidal representation associated via Howe's construction to an admissible character, we show that in many cases a criterion of Goldberg for reducibility of the induced representation reduces to a simple condition on the admissible character.

1. Introduction

Let K be a quadratic extension of a p-adic field F of characteristic zero and odd residue characteristic. Let G' and G'' be the F-rational points of the quasi-split unitary groups in 2n and 2n+1 variables, respectively, defined with respect to the extension K/F. Let $G = GL_n(K)$. Denote the kernel of the norm map from K^{\times} to F^{\times} by K^1 . The group G', resp. G'', has a maximal parabolic subgroup P', resp. P'', with Levi factor isomorphic to G, resp. $G \times K^1$. Let π be an irreducible unitary supercuspidal representation of G, and ξ a character of K^1 . Define a supercuspidal representation of G is the determinant on G, and η is the automorphism of G taking x to t = t + t where the bar denotes the usual action of the non-trivial element of Gal(K/F) on matrices with entries in K. Set

$$I(\pi) = \operatorname{Ind}_{P'}^{G'}(\pi \otimes 1)$$

and

$$I(\Pi_{\xi}) = \operatorname{Ind}_{P''}^{G''}(\Pi_{\xi} \otimes 1).$$

As it is a necessary condition for reducibilty of $I(\pi)$, and also for $I(\Pi_{\xi})$, we assume that π is equivalent to $\pi \circ \eta$. In [G2], Goldberg proves that, under this assumption, $I(\pi)$ is reducible, resp. $I(\Pi_{\xi})$ is irreducible, if and only if the sum of two particular η -twisted orbital integrals vanishes for every choice of matrix coefficient of π .

Suppose that π arises via the construction of Howe ([H]) from an admissible character θ of the multiplicative group of a tamely ramified degree n extension E of K. We show that π is equivalent to $\pi \circ \eta$ if and only $\theta \circ \sigma = \theta^{-1}$ for some involutive automorphism of E/F which is non-trivial on K. In this paper, we prove that, for many such π , Goldberg's reducibility criterion reduces to a simple condition on θ . If L is the fixed field of σ , then either $\theta \mid L^{\times}$ is trivial or is equal to the quadratic

Received by the editors November 14, 1996.

1991 Mathematics Subject Classification. Primary 22E50.

Research supported in part by NSERC.

character of L^{\times} associated to E/L by class field theory. When E is ramified over L and $\theta \mid L^{\times}$ is trivial, we show that the sum of η -twisted orbital integrals which appears in the reducibility criterion is non-zero for a particular choice of matrix coefficient of π . When E is unramified over L, we get a similar result under some additional assumptions on θ . In an earlier paper ([MR]), using a reducibility criterion of Shahidi ([Sh]), we obtained the same type of results for representations of split classical groups induced from self-contragredient supercuspidal representations of general linear groups. Many of the results of this paper are proved by modifying proofs of analogous results of [MR].

In §2, we derive the relation between the equivalence of π and $\pi \circ \eta$ and existence of σ as above. In particular, it follows from a result of Adler ([A]) that existence of such an involution σ guarantees existence of such supercuspidal representations π . We also discuss properties of the Howe factorization of θ relative to σ .

The η -twisted orbital integrals in Goldberg's criterion can be expressed as integrals over certain sets of fixed points in G of an involutive anti-automorphism φ of $\mathfrak{gl}_n(K)$. The third section contains a description of the action of φ on filtrations of the parahoric subalgebra attached to the extension E/K, and on related subgroups of G.

The representation π is induced from an irreducible representation κ of an open compact subgroup H_0 of G. In §4, we state the reducibility criterion of [G2], and show that for an appropriately chosen finite sum f_{π} of matrix coefficients of π , each of the two relevant η -twisted orbital integrals $\Phi_{\eta}(h_k, f_{\pi})$, k = 1, 2, reduces to the integral of the character of κ over a certain φ -invariant subset of H_0 .

In §5, we give some values of the character of κ , and summarize some results from [MR] relating properties of κ and certain extensions of F contained in E. We prove that if κ is one-dimensional, then $\Phi_{\eta}(h_k, f_{\pi}) > 0$, k = 1, 2.

Up to a character of H_0 , the inducing representation κ is a tensor product of finitely many representations κ_i corresponding to the Howe factors θ_i , $i = 1, \ldots, r$, of the admissible character θ . In §6, we show that if a Heisenberg representation is used in the construction of one of these factors, then the character χ_i of κ_i is real-valued on the set of φ -invariant points in H_0 . We then compute the value of certain signs appearing in the formula for χ_i .

Next, in §7, we consider the case when the representation κ_r is defined in terms of a cuspidal representation of a finite general linear group. Assuming that κ_i is one-dimensional for $1 \leq i \leq r-1$, we outline how to modify the arguments of [MR] to express $\Phi_{\eta}(h_k, f_{\pi})$, k=1,2, in terms of values of θ and sums of χ_r over various subsets of H_0 . As shown in [MR], these sums of values of χ_r can be expressed in terms of Deligne-Lusztig characters of non-connected finite reductive groups which were computed in [MR]. This allows us to relate the signs of $\Phi_{\eta}(h_k, f_{\pi})$, k=1,2, and $\theta \mid L^{\times}$.

The main results of the paper are Theorems 8.1 and 8.3. We state conditions on $\theta \mid L^{\times}$ which guarantee that $\Phi_{\eta}(h_k, f_{\pi}) > 0$, k = 1, 2, and hence that $I(\pi)$ is irreducible, resp. $I(\Pi_{\mathcal{E}})$ is reducible.

In analogy with the situation in [Sh], the reducibility criterion of [G2] can be interpreted in terms of the conjectural theory of twisted endoscopy ([KS1],[KS2]). For n=2 and 3, this is discussed in [G1] and in §4 of [G2], respectively. Under the conditions on θ given in §8 of this paper, the representation π should be a lift from the unitary group in n variables (see §§4,6 of [G2]).

2. Howe factorizations of admissible characters

Let F be a p-adic field of characteristic zero and odd residual characteristic. If F' is a finite extension of F, we will use the notation $\mathcal{O}_{F'}$, $\mathfrak{p}_{F'}$, and $\varpi_{F'}$ for the ring of integers in F', maximal ideal in the ring of integers, and a uniformizer in F', respectively. The norm and trace maps from F' to F will be denoted by $N_{F'/F}$ and $\operatorname{tr}_{F'/F}$, respectively. Fix a quadratic extension K of F. For $n \geq 2$, set $G = GL_n(K)$; we let $x \mapsto \bar{x}$ denote the action of the non-trivial element of the Galois group of K/F on G (apply the automorphism to matrix entries). Set $\eta(x) = {}^t\bar{x}^{-1}$. Let π be an irreducible supercuspidal representation of G such that $\pi \circ \eta$ is equivalent to π (denoted by $\pi \circ \eta \sim \pi$). Now suppose that π arises via Howe's construction from an admissible character θ of E^{\times} , where E/K is tamely ramified of degree n. Note that E/F may not be Galois; we use the notation Aut(E/F) to refer to the set of automorphisms of E that fix F pointwise, and similarly for Aut(E/K). Note that θ is admissible over K, but might not be admissible over F. Assume that π (hence θ) is unitary. The above condition on π translates into a condition on θ .

Lemma 2.1. $\pi \sim \pi \circ \eta$ if and only if there exists an involution $\sigma \in Aut(E/F)$ such that $\sigma \mid K \not\equiv id$ and $\theta \circ \sigma = \theta^{-1}$.

Proof. (\Rightarrow) Take an embedding τ of E into the algebraic closure of F having the property that $\tau \mid K$ is the non-trivial element of Gal(K/F). Let $E' = \tau(E)$. Then we can set $\theta'(\tau(\alpha)) = \theta(\alpha)$, $\alpha \in E^{\times}$ and observe that θ' is attached to the representation $x \mapsto \pi(\bar{x})$. But we also know that $x \mapsto \pi(^tx^{-1})$ is attached to θ^{-1} . So the condition on π forces θ' and θ^{-1} to be conjugate (over K): there is a field isomorphism $\tau' : E' \to E$ which fixes K pointwise such that $\theta^{-1}(\tau'(\alpha')) = \theta'(\alpha')$, $\alpha' \in E'^{\times}$. Set $\sigma = \tau' \circ \tau$. Then $\sigma \in Aut(E/F)$. The automorphism σ has the property that $\sigma \mid K$ is the non-trivial element of Gal(K/F) and also that $\theta \circ \sigma = \theta^{-1}$.

What remains is to show that σ is an involution. Note that $\theta \circ \sigma^2 = \theta$, and $\sigma^2 \in Aut(E/K)$. Suppose the order of σ^2 is k>1. Write E^{σ^2} for the fixed field of σ^2 . Then $[E:E^{\sigma^2}] \leq k$. But $1, \sigma^2, \sigma^4, \ldots, \sigma^{2(k-1)}$ are k distinct automorphisms of E fixing E^{σ^2} pointwise. This shows that E/E^{σ^2} is normal, with $[E:E^{\sigma^2}] = k$, and therefore Galois. Since $\theta \circ \sigma^2 = \theta$, we find that for any $t \in E^\times$, $\theta(\frac{t}{\sigma^2(t)}) = 1$. By Hilbert 90, this shows that θ is trivial on the elements of norm 1, so θ factors through the norm $N_{E/E^{\sigma^2}}$. This contradicts the admissibility of θ , proving that σ is indeed an involution.

(\Leftarrow) If there is an involution σ as in the statement of the lemma, then, as above, $x \mapsto \pi(\bar{x})$ is equivalent to $x \mapsto \pi({}^tx^{-1})$, so $\pi \sim \pi \circ \eta$.

Note that in contrast to the situation in [MR], σ acts non-trivially on the base field K over which the supercuspidal representation is defined.

Lemma 2.2. Suppose E/K is a tamely ramified extension of degree n. The following are equivalent:

- (i) There exists an involution $\sigma \in Aut(E/F)$ such that $\sigma|_{K} \not\equiv id$.
- (ii) There exist irreducible unitary supercuspidal representations π of G associated by the construction of Howe to admissible characters θ of E^{\times} and satisfying $\pi \sim \pi \circ \eta$.

Proof. Part (ii) implies (i) by Lemma 2.1.

 $(i) \Rightarrow (ii)$: The fixed field of σ is of index 2 in E. The argument given in the proof of Theorem 6.1 of [A] shows that there exists a character θ of E^{\times} that is admissible over F and such that $\theta \circ \sigma = \theta^{-1}$. Admissibility over F implies admissibility over F, and (ii) follows by Lemma 2.1.

Assume that π and θ are as in Lemma 2.1. The admissible character θ of E^{\times} has a Howe factorization (see [H], [M]):

$$\theta = (\Lambda \circ N_{E/K})\theta_r(\theta_{r-1} \circ N_{E/E_{r-1}}) \cdots (\theta_2 \circ N_{E/E_2})(\theta_1 \circ N_{E/E_1}).$$

Here θ uniquely determines the tower of fields $K = E_0 \subset E_1 \subset \cdots \subset E_r = E$ and Λ , $\theta_1, \ldots, \theta_r$ are quasi-characters of E_0^{\times} , E_1^{\times} , ..., E_r^{\times} , respectively. Comparison of the Howe factorizations of θ and $\theta \circ \sigma$ shows that $\sigma(E_i) = E_i$ for each i, although we shall see that σ does not fix E_i pointwise. Each quasi-character θ_i is generic over E_{i-1} ([H]). The conductoral exponents are unique and satisfy

$$f_E(\theta_1 \circ N_{E/E_1}) > \cdots > f_E(\theta_r) > 0.$$

If $f_E(\Lambda \circ N_{E/K}) \leq f_E(\theta_1 \circ N_{E/E_1})$, note that it is possible to absorb $\Lambda \circ N_{E/K}$ into $\theta_1 \circ N_{E/E_1}$ and write $(\Lambda \circ N_{E/K})(\theta_1 \circ N_{E/E_1}) = (\theta_1' \circ N_{E/E_1})$ for a θ_1' that is still generic over E_1 . Because of this, we can choose θ_1 such that either $\Lambda \equiv 1$ or $f_E(\Lambda \circ N_{E/K}) > f_E(\theta_1 \circ N_{E/E_1})$. For each $i = 1, \ldots, r-1$, choose an element $c_i \in E_i$ that "represents" θ_i in the sense that

$$\theta_i(1+x) = \psi \big(\mathrm{tr}_{E_i/K}(c_i x) \big), \qquad \text{for} \quad x \in \mathfrak{p}_{E_i}^{\left[\frac{f_{E_i}(\theta_i)+1}{2}\right]},$$

where $\psi = \psi_0 \circ \operatorname{tr}_{K/F}$ and ψ_0 is a character of the additive group F with conductor \mathfrak{p}_F ; we must have $c_i \in \mathfrak{p}_{E_i}^{-f_{E_i}(\theta_i)+1} \setminus \mathfrak{p}_{E_i}^{-f_{E_i}(\theta_i)+2}$ (see [H], [M]). Note that the genericity of θ_i implies that c_i generates E_i over E_{i-1} . If i = r and $f_E(\theta_r) > 1$, choose c_r as above.

Let σ be as in Lemma 2.1.

Lemma 2.3. The characters Λ and θ_i , and the elements c_i can be chosen so that

- (i) Λ , θ_i are unitary,
- (ii) $\Lambda \circ N_{E/K} \circ \sigma = (\Lambda \circ N_{E/K})^{-1}, \qquad \theta_i \circ N_{E/E_i} \circ \sigma = (\theta_i \circ N_{E/E_i})^{-1},$
- (iii) $\sigma(c_i) = -c_i$, if $f_E(\theta_i) > 1$.

Proof. The proof is the same as the proof of Lemma 2.5 in [MR], noting that the adjustments made in that proof to the various characters do not affect whether or not $f_E(\Lambda \circ N_{E/K}) > f_E(\theta_1 \circ N_{E/E_1})$ (and hence whether or not $\Lambda \equiv 1$).

From now on we assume that Λ , θ_i and c_i are as in Lemma 2.3.

3. Filtrations and the map φ

Let the notation be as in §2. We will define an antimorphism φ of $\mathfrak{gl}_n(K)$ whose action on E is given by σ , and so that the integrals we will be discussing can be expressed in terms of integrals over certain sets of φ -invariant points in a subgroup H_0 . The subgroup H_0 is the intersection with G of the subgroup H of $GL_{2n}(F)$ defined in [MR], and the map φ is the restriction to G of the map φ defined there, so various properties of these maps relative to intermediate extensions, filtrations, and parahoric subgroups will follow immediately from results of [MR].

Let L be the fixed field of σ in E. We begin by fixing embeddings $L \hookrightarrow \mathfrak{gl}_n(F)$ and $E \hookrightarrow \mathfrak{gl}_2(L) \subset \mathfrak{gl}_{2n}(F)$ and a symmetric matrix $s \in GL_n(F)$ such that w =

 $\begin{pmatrix} 0 & s \\ -s & 0 \end{pmatrix} \text{ satisfies } w^{-1} \sqrt[t]{w} = \sigma(\gamma) \text{ for every } \gamma \in E \subset \mathfrak{g}l_{2n}(F). \text{ Then, as in [MR],}$ we define the map $\varphi : \mathfrak{g}l_{2n}(F) \to \mathfrak{g}l_{2n}(F)$ by

$$\varphi(X) = w^{-1} {}^t X w.$$

By Lemma 3.4 of [MR], there is a symmetric matrix $S \in GL_n(F) \subset GL_n(K)$ such that for $X \in \mathfrak{gl}_n(K)$, we have

(3.1)
$$\varphi(X) = \mathcal{S}^{-1} \, {}^{t} \overline{X} \mathcal{S},$$

where here and from now on t refers to the transpose in $\mathfrak{gl}_n(K)$ and \overline{X} refers to the conjugate of X by σ acting on the entries of X. If E/L is ramified, take a_L to be a non-square root of unity in L. Otherwise, let $a_L = \varpi_L$. Then let

$$h_1 = \mathcal{S}^{-1}$$
 and $h_2 = a_L h_1 = a_L \mathcal{S}^{-1}$.

Note that h_1 and h_2 are hermitian as elements of $GL_n(K)$ relative to the action of σ described above. Because of the choice of a_L , $\det(h_1)$ and $\det(h_2) = N_{E/K}(a_L) \det(h_1)$ both belong to F^{\times} and, under the assumptions on E and σ (see Lemma 2.2(i)) they lie in different cosets of $N_{K/F}(K^{\times})$. This implies that h_1 and h_2 are representatives of the two equivalence classes of hermitian matrices in G.

We define various subalgebras and subgroups as in [MR]. The parahoric \mathcal{O}_F -subalgebra $\mathcal{B} \subset \mathfrak{g}l_{2n}(F)$ attached to the embedding $E \hookrightarrow \mathfrak{g}l_{2n}(F)$ is defined by

$$\mathcal{B} = \{ X \in \mathfrak{gl}_{2n}(F) \, | \, X\mathfrak{p}_E^k \subset \mathfrak{p}_E^k, \text{for all } k \}.$$

For any integer j, we also define

$$\mathcal{B}_j = \{X \in \mathfrak{g}l_{2n}(F) \, | \, X\mathfrak{p}_E^k \subset \mathfrak{p}_E^{k+j}, \text{for all } k\}.$$

The parahoric subgroup $P \subset GL_{2n}(F)$ is the units

$$P = \mathcal{B}^{\times}$$

and we let

$$P_0 = P;$$
 $P_j = 1 + \mathcal{B}_j,$ for $j \ge 1.$

We define a function ν on $\mathfrak{gl}_{2n}(F)$ by $\nu(X)=j$, where j is the unique integer such that $X\in\mathcal{B}_j\setminus\mathcal{B}_{j+1}$. Note that if $X\in E$, then $\nu(X)=\operatorname{ord}_E(X)$. We embed $\mathfrak{gl}_{[E:E_i]}(E_i)$ in $\mathfrak{gl}_n(E_0)=\mathfrak{gl}_n(K)\subset\mathfrak{gl}_{2n}(F)$ as the set of all elements of $\mathfrak{gl}_n(K)$ that centralize $E_i\subset E\subset\mathfrak{gl}_n(K)$. We will refer to this realization of $\mathfrak{gl}_{[E:E_i]}(E_i)$ as M_i . In this situation, for $i=0,\ldots,r$, we will define

$$\mathcal{B}_{j}(i) = \{ X \in M_{i} \mid X \mathfrak{p}_{E_{i}}^{k} \subset \mathfrak{p}_{E_{i}}^{k+j}, \text{ for all } k \} = \mathcal{B}_{j} \cap M_{i},$$

$$P_{j}(i) = P_{j} \cap M_{i},$$

and

$$\mathcal{B}(i) = \mathcal{B}_0(i), \qquad P(i) = P_0(i) = \mathcal{B}(i) \cap P.$$

The only difference from the definitions of [MR] is that here $\mathcal{B}_j(0) = \mathcal{B}_j \cap \mathfrak{gl}_n(K) \subsetneq \mathcal{B}_j$ (since $E_0 = K$), while in the previous paper $E_0 = F$ and $\mathcal{B}_j(0) = \mathcal{B}_j$.

Lemma 3.1. ([MR], Corollary 3.5). For $0 \le i \le r$, $(i) \varphi(M_i) = M_i$,

$$(ii) \varphi(\mathcal{B}_j(i)) = \mathcal{B}_j(i), \ j \in \mathbb{Z},$$

(iii)
$$\varphi(P_j(i)) = P_j(i), j \ge 0.$$

For
$$1 \le i \le r$$
, write $\ell_i = \left[\frac{f_E(\theta_i \circ N_{E/E_i})}{2}\right]$. Set
$$H_0 = E^{\times} P_{\ell_r}(r-1) \cdots P_{\ell_2}(1) P_{\ell_1}(0),$$

$$\mathcal{K}_i = P_{\ell_r}(r-1) \cdots P_{\ell_{i+1}}(i), \quad 0 \le i \le r-1; \qquad \mathcal{K}_r = \{1\},$$

$$\mathcal{L}_i = P_{\ell_i}(i-1) \cdots P_{\ell_1}(0), \quad 1 \le i \le r.$$

If H, K_i , L_i are the corresponding subgroups defined in §3 of [MR], then we note that $H_0 = H \cap G$, $K_i = K_i \cap G$, $\mathcal{L}_i = L_i \cap G$. For any subset $A \subset \mathfrak{gl}_n(K)$, we will write A^{φ} for the φ -fixed points in A.

Lemma 3.2. (i) ([MR], Corollary 3.8). Let $x \in H_0^{\varphi}$, and $1 \leq i \leq r$. Then there exist $y \in (E^{\times} \mathcal{K}_i)^{\varphi}$ and $z \in \mathcal{L}_i$ such that x = yz. (ii) ([MR], Lemma 3.9). Let $0 \leq i \leq r$, $j \geq 1$, and $\tau \in (H_0 \cap M_i)^{\varphi}$. Then the map $x \mapsto x\tau\varphi(x)$ from $P_i(i)$ to $(\tau P_i(i))^{\varphi}$ is onto.

4. Goldberg's reducibility criterion

Suppose that $\widetilde{\omega}$ is a character of K^{\times} of the form $\widetilde{\omega}(z) = \omega(z/\overline{z}), z \in K^{\times}$, for some character ω of the kernel K^1 of $N_{K/F}$. Let $C(G,\widetilde{\omega})$ be the space of locally constant complex-valued functions on G which are compactly supported modulo the centre Z_K of G, and satisfy $f(zg) = \widetilde{\omega}^{-1}(z) f(g), z \in Z_K, g \in G$. Let Z_F denote the F-scalar matrices in G. Given $x \in G$, let

$$G_{x\eta,Z_F} = \{ g \in G \mid gx\eta(g^{-1})x^{-1} \in Z_F \}.$$

If $f \in C(G, \widetilde{\omega})$ and x is η -semisimple, that is, (x, η) is a semisimple element of $G \rtimes \langle \eta \rangle$, the η -twisted orbital integral of f at x is defined by ([G2], Def 1.9):

$$\Phi_{\eta}(x,f) = \int_{G/G_{x\eta,Z_F}} f(gx\eta(g^{-1})) dg^{\times},$$

where dg^{\times} is the G-invariant measure on the quotient coming from Haar measures on G and $G_{x\eta,Z_F}$.

Let G', resp. G'', be the F-rational points of the quasi-split unitary group in 2n, resp. 2n+1, variables defined with respect to K/F. Let P', resp. P'', be a maximal parabolic subgroup of G', resp. G'', having Levi component isomorphic to G, resp. $G \times K^1$ (see [G2], §§2,6). Let π be an irreducible supercuspidal representation of G. Given a character ξ of K^1 , define a supercuspidal representation Π_{ξ} of $G \times K^1$ by

$$\Pi_{\xi}(x,\alpha) = \pi(x)\,\xi(\det_0(x\eta(x))\alpha), \qquad x \in G, \, \alpha \in K^1.$$

Here \det_0 denotes the determinant on G. Extend π , resp. Π_{ξ} , trivially across the unipotent radical to obtain a representation $\pi \otimes 1$, resp. $\Pi_{\xi} \otimes 1$, of P', resp. P''. Set $I(\pi) = \operatorname{Ind}_{P'}^{G'}(\pi \otimes 1)$ and $I(\Pi_{\xi}) = \operatorname{Ind}_{P''}^{G''}(\Pi_{\xi} \otimes 1)$. When n = 1, $I(\pi)$ and $I(\Pi_{\xi})$ are principal series representations, and it is known when such representations are reducible ([K1], [K2]). Thus we will assume that $n \geq 2$.

Let h_1 and h_2 be inequivalent hermitian matrices in G. Then h_1 is stably η -conjugate to h_2 ([G2], Definition 1.3, Corollary 1.7). This implies ([R]) that $G_{h_1\eta,Z_F}$ is (the F-rational points of) an inner form of $G_{h_2\eta,Z_F}$. Using an inner twisting, we define compatible measures on $G_{h_1\eta,Z_F}$ and G_{h_2,η,Z_F} , and hence on the quotients $G/G_{h_k\eta,Z_F}$, k=1,2.

Theorem 4.1. ([G2], Theorem 2.9, Theorem 6.3) Let π be an irreducible unitary supercuspidal representation of G such that $\pi \circ \eta \sim \pi$. Then the following are equivalent:

- (i) $I(\pi)$ is reducible.
- (ii) $I(\Pi_{\mathcal{E}})$ is irreducible (for any ξ).
- (iii) $\Phi_n(h_1, f) + \Phi_n(h_2, f) = 0$ for every matrix coefficient f of π .

Remark~4.2.

- (1) The condition $\pi \circ \eta \sim \pi$ is necessary for reducibility of either of $I(\pi)$ and $I(\Pi_{\xi})$ ([G2]).
- (2) The sum $\Phi_{\eta}(h_1, f) + \Phi_{\eta}(h_2, f)$ can be expressed as a κ -twisted orbital integral of f (see §1 of [G2]).
- (3) The reducibility of $I(\Pi_{\xi})$ is independent of the choice of ξ ([G2], §6).

As in §2, let E be a tamely ramified degree n extension of K, and take θ to be a unitary character of E^{\times} which is admissible over K and satisfies $\theta^{-1} = \theta \circ \sigma$ for some $\sigma \in Aut(E/F)$ such that $\sigma \mid K$ is non-trivial. Let π be the irreducible supercuspidal representation of G associated to θ via Howe's construction. Let H_0 be the open compact-mod-centre subgroup of G defined in §3. Then $\pi = \operatorname{Ind}_{H_0}^G \kappa$ for some irreducible representation κ of H_0 . Let χ_{κ} denote the character of κ . Set

(4.1)
$$\dot{\chi}_{\kappa}(x) = \begin{cases} \chi_{\kappa}(x), & \text{if } x \in H_0, \\ 0, & \text{otherwise.} \end{cases}$$

Then the function f_{π} defined by $f_{\pi}(x) = \dot{\chi}_{\kappa}(xh_1^{-1})$ is a finite sum of matrix coefficients of π .

Let h_k , k = 1, 2, and φ be as in §3. Recall that $h_2 = a_L h_1$ and $a_L \in L^{\times}$, where $L = E^{\sigma}$. Then, noting that $\varphi(g) = h_1 \eta(g^{-1}) h_1^{-1}$, we have

(4.2)
$$\Phi_{\eta}(h_1, f_{\pi}) = \int_{G/G_{h_1\eta, Z_F}} \dot{\chi}_{\kappa} (g\varphi(g)) dg^{\times},$$

$$\Phi_{\eta}(h_2, f_{\pi}) = \int_{G/G_{h_2\eta, Z_F}} \dot{\chi}_{\kappa} (ga_L \varphi(g)) dg^{\times}.$$

Our aim is to show that under certain conditions on θ , both of the integrals $\Phi_{\eta}(h_k, f_{\pi})$, k = 1, 2, are positive and hence, by Theorem 4.1, that $I(\pi)$ is irreducible, and $I(\Pi_{\xi})$ is reducible.

5. Preliminary results

Let the subgroups H_0 , \mathcal{K}_i , \mathcal{L}_i , etc. be defined as in §3. For $0 \leq i \leq r$, let $\det_i : M_i \to E_i$ denote the determinant on $M_i \simeq \mathfrak{gl}_{[E:E_i]}(E_i)$. The notation tr will be used for the trace map on $\mathfrak{gl}_n(K)$. Recall ([H], [M]) that $\pi = \operatorname{Ind}_{H_0}^G \kappa$, where the inducing representation κ is a tensor product:

$$\kappa = (\Lambda \circ \det_0) \otimes \kappa_1 \otimes \cdots \otimes \kappa_r,$$

and κ_i is defined using the character θ_i of E_i^{\times} which appears in the Howe factorization of θ . We continue to assume that Λ and θ_i , $1 \leq i \leq r$, are chosen as in Lemma 2.3. When $f_E(\theta_i \circ N_{E/E_i}) > 1$, the representation κ_i is first defined on $E^{\times}\mathcal{K}_{i-1}$ and then extended across \mathcal{L}_{i-1} by $\psi(\operatorname{tr}(c_i(\cdot - 1)))$ to get a representation of $H_0 = E^{\times}\mathcal{K}_{i-1}\mathcal{L}_{i-1}$. Here, $c_i \in E_i$ is an element representing θ_i as in Lemma 2.3.

If $f_E(\theta_r) = 1$ then κ_r is defined in terms of the cuspidal representation of the finite general linear group $P(r-1)/P_1(r-1)$ parametrized by $\theta_r \mid \mathcal{O}_E^{\times}$. This case

will be discussed in §7. Recall that $m_i = \left[\frac{f_E(\theta_i \circ N_{E/E_i})+1}{2}\right]$ and $\ell_i = \left[\frac{f_E(\theta_i \circ N_{E/E_i})}{2}\right]$, $1 \le i \le r$. If $i \le r-1$ or if i = r and $f_E(\theta_r) > 1$, define a character ω_i of $E^{\times} \mathcal{K}_i P_{m_i}(i-1) \mathcal{L}_{i-1} \subset H_0$ by $\omega_i \mid E^{\times} \mathcal{K}_i = \theta_i \circ \det_i$ $\omega_i \mid P_{m_i}(i-1)\mathcal{L}_{i-1} = \psi(\operatorname{tr}(c_i(\cdot - 1))).$ and

The condition $2m_i \ge f_E(\theta_i \circ N_{E/E_i})$ guarantees that the two definitions coincide on the intersection $E^{\times} \mathcal{K}_i \cap P_{m_i}(i-1)\mathcal{L}_{i-1}$ ([H]). If $x \in H_0^{\varphi}$, then, by Lemma 3.2(i), $x \in L^{\times} P_1(0)$. For $x \in H_0^{\varphi}$, define

$$\mu(x) = \begin{cases} 1, & \text{if } x \in N_{E/L}(E^{\times}) P_1(0), \\ a_L, & \text{otherwise.} \end{cases}$$

Lemma 5.1. ([MR], Lemma 5.1) If E/L is ramified, then $f_E(\theta_r) > 1$.

Lemma 5.2. ([MR], *Lemma 5.2*)

(i) Suppose that $x \in E^{\times} \mathcal{K}_i P_{m_i}(i-1) \mathcal{L}_{i-1}$ and $\varphi(x) = x$. If $f_E(\theta_r) = 1$, make the additional assumption that $x \in E^{\times}P_1(0)$. Then $\omega_i(x) = \theta_i(N_{E/E_i}(\mu(x)))$. (ii) If $x \in H_0^{\varphi}$, then $\Lambda(\det_0(x)) = \Lambda(N_{E/K}(\mu(x)))$.

The conductoral exponent $f_E(\theta_i \circ N_{E/E_i})$ is even if and only if $m_i = \ell_i$. In this case, $E^{\times} \mathcal{K}_i P_{m_i}(i-1) = E^{\times} \mathcal{K}_{i-1}$, so ω_i is defined on all of H_0 , and $\kappa_i = \omega_i$. In particular, if $m_i = \ell_i$, then dim $\kappa_i = 1$. If i = r and $f_E(\theta_r) = 1$, since the construction of κ_r involves a cuspidal representation of a finite general group, we

have dim $\kappa_r > 1$. Otherwise, $m_i = \ell_i + 1 \ge 2$ and a Heisenberg construction is used to define κ_i on $E^{\times} \mathcal{K}_i$, and dim $\kappa_i > 1$.

Proposition 5.3. If dim $\kappa = 1$ and $\theta \mid L^{\times} \equiv 1$, then $\Phi_n(h_k, f_{\pi}) > 0$, k = 1, 2.

Proof. By the above remarks, $m_i = \ell_i$, $1 \le i \le r$, and $\kappa_i = \omega_i$. If $x = g\varphi(g) \in H_0$, then $\varphi(x) = x$, so Lemma 5.2 applies and

$$\kappa(g\varphi(g)) = \Lambda(\det_0(g\varphi(g))) \prod_{i=1}^r \kappa_i(g\varphi(g))$$

$$\begin{split} &\kappa(g\varphi(g)) = \Lambda(\det_0(g\varphi(g))) \, \prod_{i=1}^r \kappa_i(g\varphi(g)) \\ &= \Lambda(N_{E/K}(\mu(g\varphi(g)))) \, \prod_{i=1}^r \theta_i(N_{E/E_i}(\mu(g\varphi(g)))) = \theta(\mu(g\varphi(g))), \ \ \text{if} \ g\varphi(g) \in H_0. \end{split}$$

Similarly, if
$$ga_L\varphi(g) \in H_0$$
, by Lemma 5.2,

$$\kappa(ga_L\varphi(g)) = \Lambda(N_{E/K}(\mu(ga_L\varphi(g)))) \prod_{i=1}^r \kappa_i(ga_L\varphi(g)) = \theta(\mu(ga_L\varphi(g))).$$

Since $\mu(x) \in L^{\times}$ for $x \in H_0^{\varphi}$ and $\theta \mid L^{\times} \equiv 1$, it follows from (4.2) that $\Phi_{\eta}(h_k, f_{\pi}) =$ $\Phi_{\eta}(h_k, \mathbf{1}_{H_0h_1}), k = 1, 2$, where $\mathbf{1}_{H_0h_1}$ denotes the characteristic function of H_0h_1 . Since $P_j(0)$ and $a_L P_j(0)$ are contained in H_0 for sufficiently large j, it is a simple matter to show, using Lemma 3.2(ii), that $\Phi_{\eta}(h_k, \mathbf{1}_{H_0h_1}) > 0$, k = 1, 2.

We collect some results of [MR] which will be used later in this paper.

Lemma 5.4. ([MR], Lemmas 5.4–5.7)

(i) Suppose that $K \subset N_1 \subset N_2 \subset E$, $\sigma(N_j) = N_j$, j = 1, 2, and $N_2/(N_2 \cap L)$ is ramified. Then $N_1/(N_1 \cap L)$ is ramified and $e(N_2/N_1)$ is odd.

(ii) If E/L is ramified, then dim $\kappa = 1$.

(iii) If a Heisenberg construction is required for one of the κ_i 's, then E/L is unramified.

(iv) If r > 1, $f_E(\theta_r) = 1$, and $e(E_{r-1}/(E_{r-1} \cap L)) = 2$, then dim $\kappa_i = 1$ for 1 < i < r - 1.

6. The Heisenberg construction

Fix $i, 1 \leq i \leq r$. Suppose that $f_E(\theta_i \circ N_{E/E_i})$ is odd, that is, $m_i = \ell_i + 1$. If i = r, assume in addition that $\ell_r \geq 1$. Recall that in this case (Lemma 5.4(iii)) E/L must be unramified. Set

$$H_i = K^{\times}(1 + \mathfrak{p}_E)(\mathcal{K}_i P_{\ell_i}(i-1) \cap P_1(0)),$$

$$H'_i = K^{\times}(1 + \mathfrak{p}_E)(\mathcal{K}_i P_{m_i}(i-1) \cap P_1(0)).$$

Let ω_i be the character of $E^{\times}\mathcal{K}_i P_{m_i}(i-1)\mathcal{L}_{i-1}$ defined in §5. Let χ_i denote the character of κ_i . A Heisenberg construction is used to define $\kappa_i \mid E^{\times}\mathcal{K}_i P_{\ell_i}(i-1)$ in such a way that the restriction of χ_i to H_i' is a multiple of $\omega_i \mid H_i'$. Then, if $i \geq 2$, κ_i is extended by $\psi(\operatorname{tr}(c_i(\cdot -1)))$ on \mathcal{L}_{i-1} to produce a representation of H_0 . In this section, we see that, for $x \in (E^{\times}H_i)^{\varphi}$, $\chi_i(x)$ is a real scalar multiple of $\theta_i(N_{E/E_i}(\mu(x)))$. When the scalar multiple is non-zero, we compute its sign (Corollary 6.5).

If $F \subset N \subset E$, let ζ_N denote the set of roots of unity in N of order prime to p. We assume that a uniformizer $\varpi_N \in N$ is chosen so that $\varpi_N^{e(N/F)} \in \varpi \zeta_F$, where ϖ is a uniformizer in F. Let C_N be the subgroup of N^{\times} generated by ϖ_N and ζ_N .

Lemma 6.1. Let $x \in L^{\times}(H_i \cap P_1(0))$.

- (i) There exists a unique $c_L(x) \in C_L$ such that $x \in c_L(x)(H_i \cap P_1(0))$.
- (ii) Suppose that $y^{-1}xy \in E^{\times}H'_i$ for some $y \in E^{\times}H_i$. Then, given any subfield N of E containing $E_0 = K$,

$$y^{-1}xy \in N^{\times}H_i' \iff c_L(x) \in N^{\times}.$$

Remark 6.2. In [MR], an analogue of the above lemma was proved for points which were φ -invariant, but the proof only required $x \in L^{\times}(H_i \cap P_1(0))$.

Define

$$S_i = \{ N \mid E_{i-1} \subset N \subset E, \ N \not\supset E_i \},$$

To each $N \in \mathcal{S}_i$, there are attached a sign $\operatorname{sgn}(N) \in \{\pm 1\}$, and a positive integer D(N) as defined in (3.6.47) of [M]. Set

$$\operatorname{sgn}(x) = \prod_{\{N \in \mathcal{S}_i \mid c_L(x) \notin N^{\times}\}} \operatorname{sgn}(N), \qquad x \in L^{\times}(H_i \cap P_1(0)).$$

Let $q_{E_{i-1}}$ denote the cardinality of the residue class field of E_{i-1} .

Lemma 6.3. Let $x \in (E^{\times}H_i)^{\varphi}$. If x is conjugate to an element of $E^{\times}H_i'$, then

$$\chi_i(x) = q_{E_{i-1}}^{\sum_{\{N \in \mathcal{S}_i \mid c_L(x) \in N^{\times}\}} D(N)} \operatorname{sgn}(x) \, \theta_i(N_{E/E_i}(\mu(x))).$$

Otherwise $\chi_i(x) = 0$. Here, μ is as defined in §5.

Proof. The second statement of the lemma follows from [M], §3.6. Thus, without loss of generality, we assume that there exists $y \in E^{\times} H_i$ such that $y^{-1}xy \in E^{\times} H_i'$.

Let ω_i and μ be defined as in §5. It follows from results of [M] (see Lemma 6.1 of [MR]) and Lemma 6.1, that

$$\chi_i(x) = q_{E_{i-1}}^{\sum_{\{N \in \mathcal{S}_i \mid c_L(x) \in N^{\times}\}} D(N)} \operatorname{sgn}(x) \, \omega_i(y^{-1}xy).$$

To complete the proof, arguing as for Lemma 6.4 of [MR] results in:

$$\omega_i(y^{-1}xy) = \theta_i(N_{E/E_i}(\mu(x))).$$

П

Lemma 6.4. Let $L' = L_{un}(\varpi_L \sqrt{\varepsilon})$, where L_{un} is the maximal unramified extension of F contained in L and ε is a non-square in $\zeta_{L_{un}}$. Suppose that $N \in \mathcal{S}_i$ and $\sigma(N) = N$.

- (i) If K/F is unramified, then sgn(N) = 1.
- (ii) If K/F is ramified and e(E/K) is even, then sgn(N) = 1.
- (iii) If K/F is ramified, e(E/K) is odd, and $e(E_{i-1}/(E_{i-1}\cap L)) = e(E_i/(E_i\cap L))$, then $\operatorname{sgn}(N) = 1$.
- (iv) If K/F is ramified, e(E/K) is odd, $e(E_i/(E_i \cap L)) = 1$ and $e(E_{i-1}/(E_{i-1} \cap L)) = 2$, then

$$sgn(N) = \begin{cases} -1, & if N = L', \\ 1, & otherwise. \end{cases}$$

Proof. As shown in Proposition 3.6.55 of [M], $\operatorname{sgn}(N) = 1$ whenever f(E/N) > 2. By arguing as in the second part of the proof of Lemma 7.4 of [MR], we see that $\operatorname{sgn}(N) = 1$ whenever f(E/N) = 1. Thus we need only consider the case f(E/N) = 2.

Suppose that K/F is unramified. As E/L is also unramified, and $K \not\subset L$, we have f(E/K) = f(L/F) odd. In particular, as $K \subset N$, f(E/N) must be odd, and so (i) follows.

Suppose that K/F is ramified. Assume that $N \in \mathcal{S}_i$, f(E/N) = 2 and $\sigma(N) = N$. Then, by Proposition 7.6 of [MR], $\operatorname{sgn}(N) = 1$ if [E:N] > 2, and $\operatorname{sgn}(N) = -1$ if [E:N] = 2. By Lemma 7.5(i) of [MR], L and L' are the only two extensions N' of F in E satisfying $\sigma(N') = N'$ and [E:N'] = f(E/N') = 2. By Lemma 7.5(ii) of [MR], $K \subset E_{i-1} \subset L'$ is equivalent to e(E/K) odd and $e(E_{i-1}/(E_{i-1} \cap L)) = 2$. Also, if e(E/K) is odd, then $L' \not\supset E_i$ is equivalent to $e(E_i/(E_i \cap L)) = 1$. Thus, by definition of \mathcal{S}_i , $L' \in \mathcal{S}_i$ is equivalent to the three conditions e(E/K) odd, $e(E_{i-1}/(E_{i-1} \cap L)) = 2$ and $e(E_i/(E_i \cap L)) = 1$. Parts (ii)–(iv) now follow.

Corollary 6.5. Let $x \in L^{\times}(H_i \cap P_1(0))$. Then, if ν is as defined in §3,

$$\operatorname{sgn}(x) = \begin{cases} (-1)^{\nu(x)}, & \text{if } e(E/K) \text{ is odd, } e(E_{i-1}/(E_{i-1} \cap L)) = 2, \\ & \text{and } e(E_i/(E_i \cap L)) = 1, \\ 1, & \text{otherwise.} \end{cases}$$

Proof. First note that if $\sigma(N) \neq N$, then $\sigma(E_{i-1}) = E_{i-1}$ implies that $E_{i-1} \subset \sigma(N)$. Also, $E_i \not\subset N$ and $\sigma(E_i) = E_i$ implies that $E_i \not\subset \sigma(N)$. Thus if $\sigma(N) \neq N$, we have $N \in \mathcal{S}_i$ if and only if $\sigma(N) \in \mathcal{S}_i$. It follows easily from the definitions in [M] that $\operatorname{sgn}(N) = \operatorname{sgn}(\sigma(N))$. Therefore, when computing $\operatorname{sgn}(x)$, we need only consider those $N \in \mathcal{S}_i$ such that $c_L(x) \notin N^{\times}$ and $\sigma(N) = N$.

It now follows from Lemma 6.4 that we need only consider the case where e(E/K) is odd, $e(E_{i-1}/(E_{i-1} \cap L)) = 2$, and $e(E_i/(E_i \cap L)) = 1$. (Note that in this case

K/F is ramified, by Lemma 5.4(i)). By Lemma 6.4(iv),

$$\operatorname{sgn}(x) = \begin{cases} -1, & \text{if } c_L(x) \notin L'^{\times}, \\ 1, & \text{if } c_L(x) \in L'^{\times}. \end{cases}$$

By definition, L' is a quadratic extension of $L_{un}(\varpi_L^2)$ containing ζ_L and not containing ϖ_L . It is immediate that $c_L(x) \in L'^{\times}$ if and only if $c_L(x) \in \varpi_L^{2k} \zeta_L$ for some integer k; that is, if and only if $\nu(c_L(x)) = \nu(x)$ is even.

We can predict precisely when there will be a Heisenberg construction with sgn(x) = -1 for some x, as follows:

Lemma 6.6. Assume that E/L is unramified.

(i) Suppose that K/F is ramified and e(E/K) is odd. Then there exists a unique $j, 1 \leq j \leq r$, having the property that $m_j = \ell_j + 1$ and $\operatorname{sgn}(x) = (-1)^{\nu(x)}$, $x \in L^{\times}(H_j \cap P_1(0))$. In particular, for all $i \neq j, 1 \leq i \leq r$, such that $m_i = \ell_i + 1$, we have $\operatorname{sgn}(x) = 1$, for every $x \in L^{\times}(H_i \cap P_1(0))$.

(ii) If the conditions of (i) are not satisfied, then for all $i, 1 \le i \le r$, such that $m_i = \ell_i + 1$, we have $\operatorname{sgn}(x) = 1$, for every $x \in L^{\times}(H_i \cap P_1(0))$.

Proof. First suppose that K/F is ramified and e(E/K) is odd. Then, by Lemma 5.4(i), there exists a unique $j, 1 \leq j \leq r$, such that $e(E_j/(E_j \cap L)) = 1$ and $e(E_{j-1}/(E_{j-1} \cap L)) = 2$. As $e(E/E_j)$ is odd, it follows from

$$f_E(\theta_j \circ N_{E/E_j}) = e(E/E_j) (f_{E_j}(\theta_j) - 1) + 1$$

that $m_j = \ell_j + 1$ if and only if $f_{E_j}(\theta_j)$ is odd. To show that $f_{E_j}(\theta_j)$ is odd, argue as in the proof of Corollary 7.11 of [MR]. All statements concerning $\operatorname{sgn}(x)$ are now immediate consequences of Corollary 6.5.

7. The case
$$f_E(\theta_r) = 1$$
.

Throughout this section, we assume that $f_E(\theta_r) = 1$ and that if r > 1, then κ_j is one-dimensional for $1 \le j \le r - 1$. Using a modification of the arguments of §10 of [MR], we express each $\Phi_{\eta}(h_k, f_{\pi})$, k = 1, 2, in terms of sums of the character χ_r of κ_r over subsets of \overline{H}_0 . Certain conditions on θ imply that $\Phi_{\eta}(h_k, f_{\pi}) > 0$. Omitting some of the details, we indicate how to adapt the results of §10 of [MR] to this setting.

We now define prime elements in E, L, E_{r-1} and $E_{r-1} \cap L$ as in [MR]. Recall that $f_E(\theta_r) = 1$ implies that E is unramified over E (Lemma 5.1) and over E_{r-1} . Set $e_0 = e(E_{r-1}/E_{r-1} \cap L)$ and $f_0 = f(E_{r-1}/E_{r-1} \cap L)$. Fix a prime element ϖ_0 in $E_{r-1} \cap L$ and a non-square root of unity ε in E. If $e_0 = 1$, then $E/(E_{r-1} \cap L)$ is unramified and we choose prime elements in E and E as follows: $\varpi_E = \varpi_L = \varpi_0$. If $e_0 = 2$, then $\varpi_E = \sqrt{\varpi_0}$ is a prime element in E which generates E_{r-1} over $E_{r-1} \cap L$ and satisfies $\sigma(\varpi_E) = -\varpi_E$. Furthermore, the element $\varpi_L = \sqrt{\varepsilon \varpi_0} = \sqrt{\varepsilon \varpi_E}$ is a prime element in E.

Let \overline{M} denote the residue class field of a p-adic field M. Set

$$\overline{H}_0 = (H_0 \cap P(0))/(H_0 \cap P_1(0)).$$

It follows from the definition of H_0 that

$$\overline{H}_0 \simeq P(r-1)/P_1(r-1) \simeq GL_{[E:E_{r-1}]}(\overline{E}_{r-1}).$$

If r > 1, then $\overline{H}_0 = \overline{H}$, where $\overline{H} = (H \cap P)/(H \cap P_1)$ is as in §9 of [MR]. If r = 1, then since $E_0 = K$ here and the E_0 of [MR] was F, we have $\overline{H}_0 = \overline{H} \cap GL_n(\overline{K})$.

We can now apply the results of §9 of [MR], remembering to replace \overline{H} by \overline{H}_0 in the case r=1.

As $f_E(\theta_r) = 1$ and θ_r is generic over E_{r-1} , the character $\theta_r \mid \mathcal{O}_E^{\times}$ determines a character of \overline{E}^{\times} which corresponds to an irreducible cuspidal representation $\overline{\kappa}_r$ of \overline{H}_0 . The restriction of κ_r to $H_0 \cap P(0)$ is trivial on $H_0 \cap P_1(0)$ and induces $\overline{\kappa}_r$ on \overline{H}_0 . As the prime element ϖ_E above is a prime element in E_{r-1} , setting $\kappa_r(\varpi_E) = \theta_r(\varpi_E) \kappa_r(1)$ extends κ_r to H_0 .

Let $C_{\overline{E}}$, resp. $C_{\overline{L}}$, be the set of elements in \overline{H}_0 whose semisimple part is conjugate to an element of \overline{E} , resp. \overline{L} . Next, define S_{E-L} , resp. S_L , to be the set of $x \in H_0 \cap P(0)$ such that the image of x in \overline{H}_0 belongs to $C_{\overline{E}} \setminus C_{\overline{L}}$, resp. $C_{\overline{L}}$. It follows from properties of the cuspidal representation $\overline{\kappa}_r$ of \overline{H}_0 that if $x \in H_0 \cap P(0)$ does not belong to $S_L \cup S_{E-L}$, then $\chi_r(x) = 0$. As we will see in Lemma 7.2, we need only consider values of χ_r for $x \in (\varpi_E^k(H_0 \cap P(0)))^{\varphi}$, k = 1, 2. The following lemma gives information on properties of such x, when $\varpi_E^{-k}x \in S_L \cup S_{E-L}$, k = 1, 2.

Lemma 7.1.

(i) Suppose that $x \in P(r-1)^{\varphi}$. Then there exists $g \in P(r-1)$ such that $x = g\varphi(g)$. (ii) Suppose that $x \in (\varpi_E P(r-1))^{\varphi}$. If $e_0 = 2$ and $\varpi_E^{-1} x \in \mathcal{S}_{E-L}$, or if $e_0 = 1$, then there exists $g \in P(r-1)$ such that $x = g\varpi_L \varphi(g)$.

(iii) Suppose that $e_0 = 2$ and $f(L/(E_{r-1} \cap L))$ is even. Fix $\delta \in P(r-1) \cap S_L$ such that $\varphi(\varpi_E \delta) = \varpi_E \delta$. If $x \in (\varpi_E P(r-1))^{\varphi}$ and $\varpi_E^{-1} x \in S_L$, then there exists $g \in P(r-1)$ such that $x = g\varpi_E \delta \varphi(g)$. Furthermore, $x = g_1 \varphi(g_1)$ for some $g_1 \in G$.

Proof. Statements (i), (ii), and the first part of (iii) are proved as in Lemma 10.3 of [MR].

Recall that $h_2 = \varpi_L h_1$ (§3). Given $y \in G$, $y \in G^{\varphi}$ if and only if yh_1 is hermitian. Recall (§3) that h_1 and h_2 belong to distinct equivalence classes of hermitian matrices. It follows that G^{φ} is the disjoint union of the sets $\{g\varpi_L^{\ell}\varphi(g) \mid g \in G\}$, $\ell = 0, 1$, the elements of the first set, resp. second set, having determinants in $N_{K/F}(K^{\times})$, resp. in $N_{E/K}(\varpi_L) N_{K/F}(K^{\times}) = F^{\times} \backslash N_{K/F}(K^{\times})$. Assume that δ is as in (iii). As $\varpi_E \delta \in G^{\varphi}$ by assumption, to show that $\varpi_E \delta = y\varphi(y)$ for some $y \in G$, it suffices to show that $\det_0(\varpi_E \delta) \in N_{K/F}(K^{\times})$.

Because $\delta \in \mathcal{S}_L$,

$$\det_0(\delta) \in \det_0(\mathcal{O}_L^{\times}) = \det_0(N_{E/L}(\mathcal{O}_E^{\times})) \subset N_{K/F}(\mathcal{O}_K^{\times}).$$

Also, by choice of the prime element $\varpi_E \in E_{r-1}$, since

$$[E: E_{r-1}] = 2 f(L/(E_{r-1} \cap L))$$

is divisible by 4, $N_{E/E_{r-1}}(\varpi_E) = \det_{r-1}(\varpi_E) = \varpi_E^{[E:E_{r-1}]} \in (E_{r-1} \cap L^{\times})^2$. Thus $\det_0(\varpi_E) = N_{E/K}(\varpi_E) \in (F^{\times})^2$. We conclude that $\det_0(\varpi_E\delta) \in N_{K/F}(K^{\times})$. Thus $\varpi_E\delta = y\varphi(y)$, for some $y \in G$. Taking x as in (iii), there exists $g \in P(r-1)$ such that $x = g\varpi_E\delta\varphi(g) = gy\varphi(gy)$. Set $g_1 = gy$.

Let $\mathcal{F}_k = f_{\pi} \cdot \mathbf{1}_{(H_0 \cap P(0))h_k}$, k = 1, 2, where we write $\mathbf{1}_S$ for the characteristic function of a subset S of G.

Lemma 7.2. Set e = e(E/F). Let (\cdot, \cdot) denote gcd. $(i) \ \Phi_{\eta}(h_1, f_{\pi}) = \frac{e}{(2, e)} (\Phi_{\eta}(h_1, \mathcal{F}_1) + \Phi_{\eta}(h_1, \mathcal{F}_2))$. $(ii) \ \Phi_{\eta}(h_2, f_{\pi}) = \frac{e}{(2, e)} \Phi_{\eta}(h_2, \mathcal{F}_2)$. *Proof.* By arguing as in the proof of Lemma 10.1 of [MR],

$$\chi_{\kappa}(\varpi_E^j x \varphi(\varpi_E^j)) = \chi_{\kappa}(x), \qquad x \in H_0.$$

Let $C_k = \{g\varpi_L^{k-1}\varphi(g) \mid g \in G\}$, k = 1, 2. Recall (see above) that G^{φ} is the disjoint union of C_1 and C_2 . Given $j \in \mathbb{Z}$ and $\alpha \in \mathcal{O}_E^{\times}$, define a map $\lambda_{\alpha,j}$ from G to G by $\lambda_{\alpha,j}(x) = \varpi_E^j \alpha x \varphi(\varpi_E^j \alpha)$. For $1 \leq k, \ell \leq 2$, the map $\lambda_{\alpha,j}$ restricts to a measure-preserving bijection between

$$C_k \cap \varpi_E^{\ell-1}(H_0 \cap P(0))$$
 and $C_k \cap \varpi_E^{\ell-1+2j}(H_0 \cap P(0)),$

where the measure is the one on $G/G_{h_k\eta,Z_F}$. Thus, using the map $\lambda_{\alpha,j}$, and the fact that $\chi_{\kappa} \circ \lambda_{\alpha,j} = \chi_{\kappa} \circ \lambda_{\alpha,0}$ (see above),

$$\int_{G/G_{h_{k}\eta,Z_{F}}} (\dot{\chi}_{\kappa} \mathbf{1}_{\varpi_{E}^{\ell-1}(H_{0}\cap P(0))}) (g\varpi_{L}^{k-1}\varphi(g)) dg^{\times}$$

$$= \int_{G/G_{h_{k}\eta,Z_{F}}} \dot{\chi}_{\kappa} (\alpha g\varpi_{L}^{k-1}\varphi(\alpha g)) \mathbf{1}_{\varpi_{E}^{\ell-1+2j}(H_{0}\cap P(0))} (g\varpi_{L}^{k-1}\varphi(g)) dg^{\times}$$

$$= \int_{G/G_{h_{k}\eta,Z_{F}}} (\dot{\chi}_{\kappa} \mathbf{1}_{\varpi_{E}^{\ell-1+2j}(H_{0}\cap P(0))}) (g\varpi_{L}^{k-1}\varphi(g)) dg^{\times}.$$

To obtain the second equality, we have used the fact that $\lambda_{\alpha,0}$ fixes the set $\varpi_E^{\ell-1+2j}(H_0 \cap P(0))$.

The smallest positive integer j such that $N_{E/L}(\varpi_E^j \mathcal{O}_E^{\times}) \cap F^{\times} \neq \emptyset$, that is, such that $\varpi_E^j \mathcal{O}_E^{\times} \cap G_{h_k \eta, Z_F} \neq \emptyset$, is j = e/(2, e). Therefore, applying (7.1) (which is independent of the choice of $\alpha \in \mathcal{O}_E^{\times}$), we conclude from (4.1) and $H_0 = \bigcup_{j \in \mathbb{Z}} \varpi_E^j (H_0 \cap P(0))$, that

$$\Phi_{\eta}(h_{k}, f_{\pi}) = \frac{e}{(2, e)} \sum_{1 \leq \ell \leq 2} \int_{G/G_{h_{k}\eta, Z_{F}}} \left(\dot{\chi}_{\kappa} \, \mathbf{1}_{\varpi_{E}^{\ell-1}(H_{0} \cap P(0))} \right) \left(g \varpi_{L}^{k-1} \varphi(g) \right) dg^{\times},$$

$$k = 1, 2$$

As $h_2 = \varpi_L h_1$, ϖ_L normalizes $H_0 \cap P(0)$, and $\varpi_E \in \varpi_L \mathcal{O}_E^{\times} \subset \varpi_L (H_0 \cap P(0))$, it follows that $(H_0 \cap P(0))h_2 = \varpi_E (H_0 \cap P(0))h_1$. Therefore (see comments preceding (4.1))

$$\Phi_{\eta}(h_k, \mathcal{F}_{\ell}) = \int_{G/G_{h,\eta,Z,\Gamma}} \left(\dot{\chi}_{\kappa} \, \mathbf{1}_{\varpi_E^{\ell-1}(H_0 \cap P(0))} \right) \left(g \varpi_L^{k-1} \varphi(g) \right) dg^{\times}, \qquad k, \ell = 1, 2.$$

Comparing this with the above expression for $\Phi_{\eta}(h_k, f_{\pi})$, we see that it remains to show that $\Phi_{\eta}(h_2, \mathcal{F}_1) = 0$.

Let $x \in (H_0 \cap P(0))^{\varphi}$. By Lemma 3.2(i), there exists $y \in (E^{\times} \mathcal{K}_{r-1})^{\varphi} = (E^{\times} P(r-1))^{\varphi}$ and $z \in \mathcal{L}_{r-1}$ such that x = yz. As $x \in P(0)$ and $z \in P_1(0)$, it follows that $y \in P(r-1)^{\varphi}$. By Lemma 7.1(i), there exists $y_1 \in P(r-1)$ such that $y = y_1 \varphi(y_1)$. Since $z \in P_1(0)$, and x = yz and y are φ -invariant, it follows that $\det_0(z) \in 1 + \mathfrak{p}_F$. Thus $\det_0(x) \in N_{K/F}(\det_0(y_1))(1 + \mathfrak{p}_F) \subset N_{K/F}(K^{\times})$. Since $x \in C_1 \cup C_2$, $\det_0(C_1) \subset N_{K/F}(K^{\times})$, and $\det_0(C_2) \subset F^{\times} \setminus N_{K/F}(K^{\times})$, we must have $x \in C_1$. It follows from $(H_0 \cap P(0))^{\varphi} \subset C_1$, $C_1 \cap C_2 = \emptyset$, and (7.2) that $\Phi_{\eta}(h_2, \mathcal{F}_1) = 0$.

As the κ_i 's, $1 \leq i \leq r-1$, are one-dimensional, their values on the relevant φ -invariant elements in $\varpi_E^j(H_0 \cap P(0)), j = 1, 2$, are easily computed in terms of the characters θ_i . In [MR], this was done in Lemma 10.2. Here, the result still holds, and it is proved the same way (with \overline{H}_0 replacing \overline{H}). The computation for Λ is handled in exactly the same way. Combining this with the definition of κ_r we get, for $x \in (H_0 \cap P(0))^{\varphi} \cup (\varpi_E(H_0 \cap P(0)))^{\varphi}$,

(7.3)
$$\chi_{\kappa}(x) = \begin{cases} \theta(\varpi_{E}^{\nu(x)}) \chi_{r}(\varpi_{E}^{-\nu(x)}x), & \text{if } \varpi_{E}^{-\nu(x)}x \in \mathcal{S}_{L}, \\ \theta(\varpi_{L}) \theta_{r}(\sqrt{\varepsilon})^{-1} \chi_{r}(\varpi_{E}^{-1}x), & \text{if } \nu(x) = 1 \text{ and } \varpi_{E}^{-1}x \in \mathcal{S}_{E-L}, \\ 0, & \text{if } \varpi_{E}^{\nu(x)}x \notin \mathcal{S}_{L} \cup \mathcal{S}_{E-L}. \end{cases}$$

Let $c=(-1)^{f_0}$. For $x\in (H_0\cap P(0))^{\varphi}\cup (\varpi_E(H_0\cap P(0)))^{\varphi}$, observe that the image of $\varpi_E^{-\nu(x)}x$ in \overline{H}_0 belongs to \overline{H}_0^{φ} if $\nu(x)=0$, and to $\overline{H}_0^{c\varphi}$ if $\nu(x)=1$ (see the proof of Proposition 10.5 of [MR]). Here, we are using the same notation for φ and the map which φ induces on H_0 . The next step is to express the integrals $\Phi_{\eta}(h_k, \mathcal{F}_{\ell}), 1 \leq k, \ell \leq 2$, in terms of sums of χ_r over certain φ or $c\varphi$ -invariant subsets of \overline{H}_0 . This is the analogue of Proposition 10.5 of [MR]. In order to do this, we use Lemma 7.1 to write elements of $(\varpi_E^{j-1}(H_0 \cap P(r-1)))^{\varphi}$ in the form $g\tau\varphi(g)$, where $g\in P(r-1)$, $\tau=1$ if j=1, and $\tau\in\{\varpi_L,\varpi_E\delta\}$ if j=2 (with δ as in Lemma 7.1). Using these results together with (7.2), (7.3) and Lemma 3.2, and following the proof of Proposition 10.5 of [MR], except with $\mathcal{I}(\mathcal{F}_0)$, $\mathcal{I}(\mathcal{F}_1)$, $H \cap P_1$, and \overline{H} of [MR] replaced by $\Phi_{\eta}(h_1, \mathcal{F}_1)$, $\Phi_{\eta}(h_1, \mathcal{F}_2) + \Phi_{\eta}(h_2, \mathcal{F}_2)$, $H_0 \cap P_1(0)$, and \overline{H}_0 , respectively, results in

Proposition 7.3. Suppose that $f_E(\theta_r) = 1$. If $f_0 = 2$, assume that dim $\kappa_i = 1$ for $1 \le i \le r - 1$.

(i)
$$\Phi_{\eta}(h_1, \mathcal{F}_1) = \Phi_{\eta}(h_1, \mathbf{1}_{(H_0 \cap P_1(0))h_1}) \left(\sum_{x \in \overline{H}_0^{\varphi}} \chi_r(x) \right).$$

(ii) If $e_0 = 1$, then $\Phi_{\eta}(h_1, \mathcal{F}_2) = 0$ and

$$\Phi_{\eta}(h_2, \mathcal{F}_2) = \theta(\varpi_L) \, \Phi_{\eta}(h_2, \mathbf{1}_{(H_0 \cap P_1(0))h_2}) \left(\sum_{x \in \overline{H}_{\rho}^{\varphi}} \chi_r(x) \right).$$

(iii) If $e_0 = 2$ and $f(L/(E_{r-1} \cap L))$ is odd, then $\Phi_{\eta}, (h_1, \mathcal{F}_2) = 0$ and

$$\Phi_{\eta}(h_2, \mathcal{F}_2) = \Phi_{\eta}(h_2, \mathbf{1}_{(H_0 \cap P_1(0))h_2}) \,\theta(\varpi_L) \,\theta_r(\sqrt{\varepsilon})^{-1} \left(\sum_{x \in \overline{H_0}^{-\varphi}} \chi_r(x) \right).$$

(iv) If $e_0 = 2$ and $f(L/(E_{r-1} \cap L))$ is even, let δ be as in Lemma 7.1(iii). Then

$$\Phi_{\eta}(h_2, \mathcal{F}_2) = \Phi_{\eta}(h_2, \mathbf{1}_{(H_0 \cap P_1(0))h_2}) \, \theta(\varpi_L) \, \theta_r(\sqrt{\varepsilon})^{-1} \, \left(\sum_{x \in (\mathcal{C}_{\overline{E}} \setminus \mathcal{C}_{\overline{L}}) \cap \overline{H}_0^{-\varphi}} \chi_r(x) \right),$$

$$\Phi_{\eta}(h_1, \mathcal{F}_2) = \Phi_{\eta}(h_1, \mathbf{1}_{(H_0 \cap P_1(0))\delta\sqrt{\varepsilon}^{-1}h_2}) \theta(\varpi_E) \left(\sum_{x \in \mathcal{C}_{\overline{L}} \cap \overline{H}_0^{-\varphi}} \chi_r(x) \right).$$

Remark 7.4. We have used the facts that $(H_0 \cap P_1(0))h_2 = \varpi_L(H_0 \cap P_1(0))h_1$ and that, when $e_0 = 2$, $(H_0 \cap P_1(0))\delta\sqrt{\varepsilon}^{-1}h_2 = \varpi_E\delta(H_0 \cap P_1(0))h_1$. By arguing along the same lines as in the last part of the proof of Lemma 7.2, we can use Lemma 7.1 to show that if $x \in (\varpi_E(H_0 \cap P(0)))^{\varphi}$ satisfies $\varpi_E^{-1} x \in \mathcal{S}_{E-L} \cup \mathcal{S}_L$, then $x = g\varphi(g)$

for some $g \in G$ if and only if $\varpi_E^{-1} x \in \mathcal{S}_L$, and that can happen only when $e_0 = 2$ and $f(L/(E_{r-1} \cap L))$ is even. This leads to the conditions on $\Phi_{\eta}(h_1, \mathcal{F}_2)$ in parts (ii)-(iv) (see (7.2)).

The signs of the sums appearing in Proposition 7.3 are evaluated as in [MR], using results of §9 of [MR], yielding

$$\Phi_{\eta}(h_1, \mathcal{F}_1) > 0 \text{ and } \Phi_{\eta}(h_1, \mathcal{F}_2) = 0,$$

$$(-1)^{f_0} \theta(\varpi_L)^{-1} \Phi_{\eta}(h_2, \mathcal{F}_2) > 0.$$

Combining this with Lemma 7.2 results in:

Theorem 7.5. Suppose that $f_E(\theta_r) = 1$. If $f_0 = 2$, assume that $m_i = \ell_i$ for $1 \le i \le r - 1$.

- (i) If $e_0 = 1$ and $\theta \mid L^{\times} \equiv 1$, then $\Phi_{\eta}(h_k, f_{\pi}) > 0$, k = 1, 2.
- (ii) If $e_0 = 2$ and $\theta \mid L^{\times} \not\equiv 1$, then $\Phi_{\eta}(h_k, f_{\pi}) > 0$, k = 1, 2.

8. Main results

Recall that E is a tamely ramified degree 2n extension of F, $n \geq 2$, and θ is a unitary character of E^{\times} , admissible over the quadratic extension K of F, having the property that $\theta \circ \sigma = \theta^{-1}$ for some involution σ in Aut(E/F) whose restriction to K is non-trivial. As discussed in §2 (Lemma 2.1), the supercuspidal representation π of $G = GL_n(K)$ associated to θ via Howe's construction ([H]) has the property that $\pi \circ \eta \sim \pi$. The fixed field of σ is denoted by L. Our main results are stated in terms of the values of θ on L^{\times} and certain ramification degrees. We continue to assume that the residue characteristic p of F is odd.

Theorem 8.1. Let f_{π} be the finite sum of matrix coefficients of π defined in §4. If θ satisfies one of the following conditions, then $\Phi_{\eta}(h_k, f_{\pi}) > 0$, k = 1, 2.

- (i) E is ramified over L and $\theta \mid L^{\times} \equiv 1$,
- (ii) E is unramified over L and

$$\theta \mid L^{\times} = (-1)^{\operatorname{ord}_{E}(\cdot) (e(K/F) - 1) e(E/K)}$$

with the additional assumption that if r > 1 and $f_E(\theta_r) = 1$, then $m_i = \ell_i$, $1 \le i \le r - 1$.

Remark 8.2. The purpose of the additional assumption in (ii) is to exclude the case where a Heisenberg construction and a representation of a finite general linear group both occur in the inducing data for π . As remarked in [MR], we expect that the result still holds in that case.

Proof of Theorem 8.1. If (i) holds, the result follows from Proposition 5.3 and Lemma 5.4(ii).

Assume that (ii) holds. If $f_E(\theta_r) = 1$ and $f_0 = 1$, then e(K/F) = 2 and $e(E_{r-1}/K)$ is odd, by Lemma 5.4(i). Therefore $e(E/K) = e(E_{r-1}/K)$ is odd. Note that in this case $m_i = \ell_i$ is guaranteed by Lemma 5.4(iv). If $f_E(\theta_r) = 1$, $f_0 = 2$, and e(K/F) = 2, then, by Lemma 6.6(i), the assumption $m_i = \ell_i$, $1 \le i \le r - 1$, implies that e(E/K) is even. We conclude that in the case $f_E(\theta_r) = 1$, Theorem 7.5 coincides with this theorem.

For the remainder of the proof, suppose that (ii) holds and $f_E(\theta_r) > 1$. Let μ be as defined in §5. It follows from Lemma 5.2 that, given $1 \le i \le r$ and $x \in H_0^{\varphi}$,

(8.1) If
$$m_i = \ell_i$$
, then $\chi_i(x) = \kappa_i(x) = \theta_i(N_{E/E_i}(\mu(x)))$,
$$\Lambda(\det_0(x)) = \Lambda(N_{E/K}(\mu(x))).$$

Next, suppose that $m_i \neq \ell_i$ for some i. Let H_i and H'_i be as in §6. By Lemma 3.2(i), given $x \in H_0^{\varphi}$, there exist $y \in (E^{\times}H_i)^{\varphi} = (E^{\times}\mathcal{K}_{i-1})^{\varphi}$ and $z \in \mathcal{L}_{i-1}$ such that x = yz. By definition of κ_i (see the beginning of §5),

$$\chi_i(x) = \chi_i(y) \, \psi(\operatorname{tr}(c_i(z-1))).$$

Note that $z - 1 \in \mathcal{B}_{\ell_{i-1}}(0)$, so that

$$y'(z-1)y'^{-1} \in (z-1) + \mathcal{B}_{\ell_i + \ell_{i-1}}(0) \subset (z-1) + \mathcal{B}_{f_E(\theta_i \circ N_{E/E_i})}(0),$$
if $y' \in P_{\ell_i}(0)$.

Now $y \in E^{\times} \mathcal{K}_{i-1} = E^{\times} \mathcal{K}_i P_{\ell_i}(i-1)$, and c_i commutes with $E^{\times} \mathcal{K}_i$, so

$$\operatorname{tr}(c_i(y(z-1)y^{-1})) = \operatorname{tr}(c_i(z-1)).$$

By definition of φ , $\operatorname{tr}(\varphi(X)) = \sigma(\operatorname{tr}(X))$, $X \in \mathfrak{g}$. As x and y are φ -invariant, it follows that $\varphi(z) = yzy^{-1}$. Thus, using Lemma 2.3(iii), we find

$$\sigma(\operatorname{tr}(c_i(z-1))) = -\operatorname{tr}(c_i(y(z-1)y^{-1})) = -\operatorname{tr}(c_i(z-1)).$$

Combining this with $\psi = \psi_0 \circ \operatorname{tr}_{K/F}$ (see §2), results in $\psi(\operatorname{tr}(c_i(z-1))) = 1$. Thus $\chi_i(x) = \chi_i(y)$. As $y \in E^\times H_i$, we may apply results of §6 to evaluate $\chi_i(y)$. Let ν be as in §3. Note that $\nu(x) = \nu(y)$ and $\mu(x) = \mu(y)$. If y is conjugate to an element of $E^\times H_i'$, then by Lemma 6.3 and Corollary 6.5,

 $\chi_i(x)$ is a positive multiple of

(8.2)
$$\begin{cases} (-1)^{\nu(x)} \theta_i(N_{E/E_i}(\mu(x))), & \text{if } e(E/K) \text{ is odd, } e(E_{i-1}/(E_{i-1} \cap L)) = 2, \\ & \text{and } e(E_i/(E_i \cap L)) = 1, \\ \theta_i(N_{E/E_i}(\mu(x))), & \text{otherwise.} \end{cases}$$

As shown in Lemma 6.6, the first case in (8.2) can occur if and only if e(E/K) is odd and e(K/F) = 2, and then it must occur for exactly one $i, 1 \le i \le r$.

It follows from (8.1), (8.2), Lemma 6.6, and the definition of κ (see §5), that if $x \in H_0^{\varphi}$ and $\chi_{\kappa}(x) \neq 0$, then $\chi_{\kappa}(x)$ is a positive multiple of

$$\theta(\mu(x)) (-1)^{\nu(x)} (e(K/F)-1) e(E/K).$$

In particular, if $x \in (E^{\times}P_{m_r}(r-1)\cdots P_{m_1}(0))^{\varphi}$, and θ is as in (ii), then $\chi_{\kappa}(x) > 0$. Thus, by (4.2), $\Phi_{\eta}(h_k, f_{\pi}) > 0$, k = 1, 2.

As in §4, we let G' and G'' be the F-rational points of the quasi-split unitary groups in 2n and 2n+1 variables, respectively, defined with respect to K/F. Recall that P' and P'' are parabolic subgroups of G' and G'', respectively, having Levi components isomorphic to G and $G \times K^1$, respectively. Given a character ξ of K^1 , the supercuspidal representation Π_{ξ} of $G \times K^1$ is defined by $\Pi_{\xi}(x,\alpha) = \pi(x) \, \xi(\det_0(x\eta(x))\alpha), \ x \in G, \ \alpha \in K^1$. We can combine Theorem 8.1 and Goldberg's reducibility criterion (Theorem 4.1) to obtain results concerning reducibility of the representations $I(\pi) = \operatorname{Ind}_{P'}^{G'}(\pi \otimes 1)$, and $I(\Pi_{\xi}) = \operatorname{Ind}_{P''}^{G''}(\Pi_{\xi} \otimes 1)$.

Theorem 8.3. Suppose that the admissible character θ satisfies (i) or (ii) of Theorem 8.1. Then $I(\pi)$ is irreducible and $I(\Pi_{\xi})$ is reducible (for any ξ).

It is likely that the above conditions on θ are necessary and sufficient for irreducibility of $I(\pi)$ (equivalently, for reducibility of $I(\Pi_{\xi})$). See §11 of [MR] for a discussion of the analogous situation for induced representations of split classical groups. In order to show sufficiency, it would be necessary to prove that $\Phi_{\eta}(h_1, f) = -\Phi_{\eta}(h_2, f)$ for all choices of matrix coefficients f of π .

Conjecture 8.4. $I(\pi)$ is irreducible if and only if $\theta \mid L^{\times}$ satisfies

$$\theta \mid L^{\times} = \left\{ \begin{array}{ll} 1, & \text{if } f(E/L) = 1, \\ (-1)^{\operatorname{ord}_{E}(\cdot)} \left(e(K/F) - 1 \right) e(E/K), & \text{if } f(E/L) = 2. \end{array} \right.$$

Combining Theorem 8.3 and a result of Goldberg, we can get information about reducibility of representations induced from non-unitary supercuspidal representations of G and of $G \times K^1$. Let $|\cdot|_K$ denote the normalized valuation on K. For s a non-negative real number, set

$$I(s,\pi) = I(\pi \otimes |\det_0(\cdot)|_K^{s/2})$$

and

$$I(s, \Pi_{\xi}) = I(\Pi_{\xi} \otimes |\det_0(\cdot)|_K^s).$$

Corollary 8.5. Suppose that the admissible character θ satisfies (i) or (ii) of Theorem 8.1. Then $I(s,\pi)$ is reducible if and only if s=1, and $I(s,\Pi_{\xi})$ is irreducible for all s>0.

Proof. By Theorem 8.3, $I(\pi) = I(0, \pi)$ is irreducible, and $I(\Pi_{\xi}) = I(0, \Pi_{\xi})$ is reducible. The result then follows from Theorems 3.1 and 6.3 of [G2].

References

- A. J. D. Adler, Self-contragredient supercuspidal representations of GL_n, Proc. Amer. Math. Soc. 125 (1997), no. 8, 2471–2479. MR 97j:22038
- G1. D. Goldberg, Reducibility of generalized principal series representations for U(2, 2), Comp. Math. 86 (1993), 245–264. MR 94i:22039
- G2. _____, Some results on reducibility for unitary groups and local Asai L-functions, J. Reine Angew. Math. 448 (1994), 65–95. MR 95g:22031
- H. R. Howe, Tamely ramified supercuspidal representations of GL_n , Pacific J. Math. **73** (1977), 437–460. MR **58**:11241
- K1. D. Keys, Principal series representations of special unitary groups over local fields, Comp. Math. 51 (1984), 115–130. MR 85d:22031
- K2. _____, L-indistinguishability and R-groups for quasi-split groups: unitary groups in even dimension, Ann. scient. Ec. Norm. Sup. t.20 (1987), 31–64. MR 88m:22042
- KS1. R. Kottwitz and D. Shelstad, Twisted endoscopy I: definitions, norm mappings and transfer factors, preprint.
- KS2. _____, Twisted endoscopy II: basic global theory, preprint.
- M. A. Moy, Local constants and the tame Langlands correspondence, Amer. J. Math. 108 (1986), 863–930. MR 88b:11081
- MR. F. Murnaghan and J. Repka, Reducibility of some induced representations of split classical p-adic groups, Compositio Math., to appear.

- R. J.D. Rogawski, Automorphic representations of unitary groups in three variables, Ann. Math. Stud. 123, Princeton, NJ, 1990. MR 91k:22037
- Sh. F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke J. Math. 66 (1992), 1–41. MR 93b:22034

Department of Mathematics, University of Toronto, 100 St. George Street, Toronto, Canada, M5S 3G3

 $E\text{-}mail\ address{:}\ \mathtt{fiona@math.toronto.edu}$

Department of Mathematics, University of Toronto, 100 St. George Street, Toronto, Canada, M5S 3G3

 $E\text{-}mail\ address{:}\ \mathtt{repka@math.toronto.edu}$